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Abstract
This study attempted to examine the complex impact of dynamic inundation process of 
extreme events on flood hazard assessment (FHA) for the affected urban settings around 
a local river in New York, USA. Using HEC-RAS 2D, LIDAR DEM, distributed values 
of surface roughness, and hourly discharges at both ends of the selected reach, we simu-
lated the full inundation process of a 500-year storm event, constructed in terms of the 
existing largest storm event. We presented flooding status at three flooding moments and 
quantitatively described the temporal changes of inundation area, depth, and the associ-
ated stream power over the entire flood period. Then, we analyzed differences of inundated 
areas in four classes defined using traditional classification (TC) and process-based clas-
sification (PBC). The (static) former was based on the maximum inundation map, while the 
(dynamic) latter accounted for both inundation depth and duration. We showed that inun-
dated areas in higher classes based on TC were much greater than those in similar classes 
based on PBC, indicating the significant impact of inundation duration on classification of 
flood hazard. Next, we investigated the impact of different land use/cover on the difference 
of inundated areas between the two types of classifications and found that it was complex 
and displayed no consistent trend from areas surrounding individual buildings (local scale) 
to large inundated areas (global scale). We emphasize the importance of considering the 
overall impact of the entire flood processes of an event on future FHA.

Keywords  Flood hazard assessment · Inundation process · Inundation duration · Inundation 
depth · HEC-RAS 2D

1  Introduction

Among natural disasters that greatly disturb human lives, properties, and living environ-
ments, flooding receives a top rank because of its worldwide impact and high frequency 
(Adelekan 2011; Borga et al. 2011; Kvocka et al. 2015; Wahl et al. 2015). It has been well 
known that climate change and urbanization have increased the frequency and magnitude 
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of floods (Li et  al. 2013; Rojas et  al. 2013; Zhang and Pan 2014; Jenkins et  al. 2017). 
Urbanization reduces permeability of the ground surface, encouraging flashy floods even 
for regular rainfall events. Global warming that has been confirmed by more and more evi-
dence (IPCC 2013; Liu et al. 2019) increases chances of flashy floods occurring in urban 
areas of head watersheds by inducing more heavy rainfall and/or unseasonal snowmelt 
events. Thus, flashy floods tend to occur more frequently around the world (Jonkman 2005; 
Barredo 2007; Kvocka et al. 2018). The occurrence of flashy floods, which are character-
ized by fast arrival of the peak discharge (Terti et al. 2015; Bodoque et al. 2016), is not 
only related to meteorological conditions (e.g., rainfall intensity and air temperature), but 
also topographical and hydrological settings of the affected areas (Marchi et al. 2010). It 
follows that flashy floods may be highly variable in space and over time (Marchi, 2009; 
Aroca-Jimenez et al. 2017), which greatly challenges flood prediction and pre-flood warn-
ing. For example, a local watershed of 311 km2 in central New York had a historical flood 
event with the recurrence interval (RI) of 86 years, but the flood was caused by a highly 
concentrated ‘regular’ rainfall event (RI = 11) (Gao and Hartnett 2016). Therefore, knowl-
edge of degree and extent of flood impact on an urban area is critical for determining miti-
gation priorities and making flood compensation policies (Darabi et  al. 2019). Thus far, 
these practices are mostly based on assessment of flood risk that involves a combination of 
flood hazard evaluation and vulnerability analysis (Meyer et al. 2009; De Moel et al. 2015; 
Sy et al. 2019). Here, we solely focused on the former, which is typically achieved in terms 
of static flood inundation maps developed using a variety of methods (Link et  al. 2019; 
Abdessamed and Abderrazak 2019; Prabnakorn et al. 2019).

Although approaches involving individual survey and stakeholder collaboration may 
provide specific information about flood impact on individual urban residents and/or spe-
cific groups (Adelekan 2011; Roosa et al. 2017), creation of detailed flood maps indicat-
ing different flooding stages is more useful for flood hazard and risk assessment (D’Oria 
et  al. 2019). While inundation extent and depths, flow velocities, and duration time are 
key parameters for characterizing flooding processes (Gain and Hoque 2013; Arrault et al. 
2016), the most commonly used end product is maximum inundation map, which shows 
the potential extent of flooded water might reach. In Europe, the Flood Directive of the 
European Commission mandates flood risk maps for all river basins and sub-basins with 
significant potential risk of flooding (Apel et  al. 2009). In the USA, Federal Emergency 
Management Agency (FEMA) regularly updates insurance maps of all watersheds to pro-
vide accurate flood hazard and risk data that may facilitate mitigation actions at all admin-
istrative levels (https://​www.​fema.​gov/​natio​nal-​flood-​insur​ance-​progr​am-​flood-​hazard-​
mappi​ng).

A variety of methods have been proposed to develop these maps. Using available his-
torical maps is a classic approach to delineating inundation extent by comparing maps at 
different times (Apel et al. 2009; Jalayer 2014). Remote sensing data and GIS technology 
offer a different means of identifying flood inundation zones (Awadallah and Tabet 2015; 
Franci et  al. 2016; Waghwala and Agnihotri 2019). Yet, the most widely used approach 
resorts to a variety of hydrodynamic models that may be divided into one-dimensional 
(1D), two-dimensional (2D), and three-dimensional (3D) models, according to their 
degrees of complexity in spatially representing the floodplain flow (Schumann et al. 2014; 
Meesuk et al. 2015; Wang et al. 2015; Alivio et al. 2019). The 1-D models treat flow as 
the one-dimensional object along the central line of a river channel (DHI 2003; Brunner 
2016). They may simulate flow processes in river channels with a low computational cost 
(Callow and Boggs 2013; Tsakiris 2014), The 2-D models are capable of describing the 
complex topography of a floodplain and free flow on it (Dottori and Todini 2013; Banks 

https://www.fema.gov/national-flood-insurance-program-flood-hazard-mapping
https://www.fema.gov/national-flood-insurance-program-flood-hazard-mapping
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et al. 2014; Mihu-Pintilie et al. 2019). Despite the ability of representing vertical compo-
nents of the flood-relevant parameters, 3-D models are unnecessarily complex and require 
intensive computation (Tsakiris 2014). Limitations of these models have fostered a trend of 
combining 1D with 2D models, possibly including GIS (Mani et al. 2014; Bisht et al. 2016; 
Fan et al. 2017), such as MIKE, HEC-RAS, LisFlood-FP, and TUFLOW, which have been 
corroborated for their robust performance (Yu and Lane 2006; Sanders et al. 2008).

However, majority of model assessments and applications were based on prediction of 
the flood inundation map showing the (maximum) inundation extent with spatially variable 
inundation depths (Mason et al. 2009; Sarhadi et al. 2012; Smith et al. 2014; Dimitriadis, 
2016; Afshari et  al. 2018; Langhammer and Vackova 2018). The implied assumption in 
these studies was that the most severe damage of flooding was associated with the maxi-
mum inundation extent. This may not be true in many cases. For example, a building that 
was inundated by flow with the depth of 3  m for one hour at the maximum inundation 
moment may be only inundated by flow with the depth of 1 m for many hours, while the 
one suffered the maximum inundation depth of 2.5  m might be inundated by the depth 
of 2 m for a long time period. The flood hazard to the latter could be greater than that to 
the former. This difference could affect the policy of flood management, which relies on 
the advance assessments on the flood events. (Meyer et al. 2009). Therefore, understand-
ing dynamics of inundation processes and the associated variable impacts on flood-zone 
objects, such as buildings, could provide a valuable information for better managing flood 
disasters. Apparently, this issue has not been well investigated. To fill the gap, this study 
aimed at (1) characterizing the inundation dynamics of a projected extreme (500-year) 
flood event in City of Syracuse, New York, (2) developing a process-based classification 
for more accurate assessment of flood damage, and (3) evaluating the important role of 
land use/cover (LULC) in the new classification.

Although a number of above-mentioned models are qualified for achieving our pur-
poses, we selected HEC-RAS2D in this study because it directly predicts inundation pro-
cess in the 2D floodplain. We first calibrated the HEC-RAS2D model using obtained high-
resolution DEM data and discharge data of a known rainfall event. Then, we simulated 
a constructed 500-year event based on recorded historical hydrographs and demonstrated 
the dynamics of inundation processes and temporal changes of inundation depth, area, and 
stream power. Next, we quantitatively developed a new classification for assessing flood 
damage by considering both inundation depths and their durations and demonstrated its 
differences from the classic classification Third, we examined the variable influences of 
different LULC types on the new classification. Finally, we showed the potential value of 
this new classification in assessing flood hazards.

2 � Materials and methods

2.1 � Study area

Onondaga Creek runs over 43.5  km from its southwest edge bounded by the terminal 
moraine of glaciers to the north end connecting to Onondaga Lake (Fig. 1). Its downstream 
reach, which is approximately 11.2 km with no major tributaries, passes through the City 
of Syracuse (Fig. 1). Although most of the downstream reach has been channelized dur-
ing the 1963–1969 period (OEI 2009), its neighboring urban area still suffers from flood 
disasters. According to the historical record, this area experienced 28 flood incidents from 
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the Onondaga Creek between 1865 and 2007, most of which occurred either in winter or 
early spring due to unseasoned warm weather (Dormitory Authority of the State of New 
York 2016; FEMA 2016).The study area includes the neighboring lands around the down-
stream reach of the Onondaga Creek and the belt extended to the east edge of the city 
(Fig.  1). It has lower elevations compared with most of other parts in the city and thus 
represents the city portion that might be inundated by extreme events. Geomorphologi-
cally, the study area sets its upstream boundary at Dorwin Avenue on the south and the 
downstream boundary at the outlet to Onondaga Lake. Selection of this study area was 
based on three factors. First, urban residents and properties in this area are most vulner-
able to the potential flooding. Thus, understanding the potential impact of extreme flood 
events on such an urban environment not only has a great social and economic significance 
for local urban residents but also provides a valuable example for other cities suffering 
similar flooding problems. Second, the selected river reach within the study area includes 

Fig. 1   Geographic setting of the study area. ‘Station’ refers to locations of the two USGS gauging stations. 
The yellow area in the inset represents Onondaga Creek watershed, which only covers a proportion of City 
of Syracuse. ‘NHDflowline’ denotes the selected downstream reach of the Onondaga Creek
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two USGS gauging stations, one is on the upstream boundary (04,239,000) and another is 
at Spencer Street (04,240,010), about 1.8 km upstream of the north boundary of the study 
area (Fig.  1). Hydrological data available from these two stations allowed us to prepare 
the input discharge data, calibrate the model, and construct a 500-year event. Third, the 
selected neighboring area is within the projected inundation zone of a 500-year flood event 
by Federal Emergency Management Agency (FEMA) (http://​fema.​maps.​arcgis.​com/​home/​
webmap/​viewer.​html?​webmap=​cbe08​8e7c8​70446​4aa0f​c34eb​99e7f​30&​exten​t=-​76.​29363​
54931​6382,43.​00889​74816​628,-​76.​00112​45068​3609,43.​09168​94262​3266). Thus, our pre-
dicted results may be compared with that from FEMA.

2.2 � Software for modeling flood dynamic processes

HEC-RAS 2D was used in this study to simulate the hydraulic and hydrological processes 
of the selected flood events in the study reach of the Onondaga Creek. HEC-RAS, which 
refers to the Hydrologic Engineering Center’s River Analysis System developed by U.S. 
Army Corps of Engineers, is an integrated software system designed for interactive use 
in a multi-tasking environment. As an open-source software, HEC-RAS is free download-
able and has 1D and 2D versions, both of which may be used to simulate hydrodynamic 
processes for flooding events. In the USA, HEC-RAS 1D model has been widely used to 
create flood risk map by FEMA.

HEC-RAS 2D simulates flow hydrodynamic processes using either 2D diffusion wave 
equations or full 2D St. Venant equations. The former is a simplified procedure that 
reduces the complexity of hydrodynamic processes of a flow, while the latter keeps the 
full scale of its hydrodynamic characteristics. Although the simplified module avoided the 
demand of high-resolution terrain data, which may not be always available, the full module 
is preferable for its improvement of modeling accuracy if high-resolution data are available 
(Dottori and Todini 2011; Tsakiris 2014; Costabile and Macchione 2015). In this study, we 
adopted the full module for achieving results with higher accuracy.

2.3 � Data collection and model setup

Basic input data required for running HEC-RAS 2D are (1) high-resolution DEM repre-
senting morphology of the study river channel and its adjacent area; (2) distributed values 
of surface roughness, which may be assigned using the available land use and land cover 
(LULC) data; (3) field-observed hydraulic data, which are typically discharge and stage 
data, as well as channel cross sections. The DEM data for our study area were converted 
from an available LIDAR (Light Detection and Ranging) data with the resolution of 0.3 m. 
Because the study area is highly urbanized, many bridges and roads were built cross the 
selected reach. Therefore, channel morphology in these places cannot be represented by 
DEM and was estimated based on their neighboring morphology. After this correction, the 
river channel with variable elevations was topographically connected to the overbank flow 
areas and the boundary of the 2D flow area for simulation was delineated for use in the 
subsequent simulation (Fig. 2).

Nonetheless, because LIDAR cannot penetrate into water to detect the true channel bed, 
the cross sections extracted from LIDAR generally had higher channel beds compared with 
their counterparts measured in situ. By comparing 9 true cross sections measured by Army 
Corps and Engineering with the extracted ones from DEM (Fig. 2), we estimated that on 

http://fema.maps.arcgis.com/home/webmap/viewer.html?webmap=cbe088e7c8704464aa0fc34eb99e7f30&extent=-76.29363549316382,43.0088974816628,-76.00112450683609,43.09168942623266
http://fema.maps.arcgis.com/home/webmap/viewer.html?webmap=cbe088e7c8704464aa0fc34eb99e7f30&extent=-76.29363549316382,43.0088974816628,-76.00112450683609,43.09168942623266
http://fema.maps.arcgis.com/home/webmap/viewer.html?webmap=cbe088e7c8704464aa0fc34eb99e7f30&extent=-76.29363549316382,43.0088974816628,-76.00112450683609,43.09168942623266
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average the true channel bed is 0.42 m lower than the extracted one. Based on this, the 
extract channel beds were lowered by the average depth.

To assure the accuracy of the determined values of the spatially distributed surface 
roughness for improving modeling outcomes, LULC types of the study area were classified 
using both the 2010 LIDAR data and the 2009 New York State 4-ban leaf-off ortho-photo-
graphs. The resultant LULC classes were tree canopy, grass/shrub, water body, bare earth, 
buildings, roads, and other paved surfaces (University of Vermont Spatial Analysis Labora-
tory, USDA Forest Service) (Fig. 3a). Their associated roughness values (i.e., Manning’s 
n) were selected in terms of previous studies (Table 1). The values of 0.1 for forest and 
grass/shrub lands, 0.3 for water body and bare earth, and 0.03 for other paved surface were 
suggested by both FEMA and O’Brien & Gere in a local flood control project sponsored by 
City of Syracuse based on their field observation (Dormitory Authority of the State of New 
York 2016; FEMA 2016). The roughness value for roads was set as 0.016 and for buildings 
was assigned as 0.4 (Syme 2008; Dorn et al. 2014).

This classification over-simplified variation of surface roughness in channel bed and 
banks, as well as its vicinity areas because many of these areas are shaded by tree leaves 
due to high density of plants along the channel. Since a large proportion of the channel 
within the study area has been artificially protected, the channel was divided into three 
parts, the bed and low banks covered by water, the upper banks with paved surface, and the 
overbank areas covered with grass. The roughness value was assigned as 0.03 for the first 
two and 0.1 for the last one (Table 1). These arrangements finally ended up with a distribu-
tion of roughness values in the study area (Fig. 3b).

Discharge and stage data for the selected storm events were downloaded from USGS web-
sites of these two stations. These data were used to establish boundary conditions for model 
simulation. Different from HEC-RAS 1D, HEC-RAS 2D requires that (i) the 2D flow area 
should be connected to stream channels and (ii) external boundary conditions should be 

Fig. 2   DEM of the study area with a high resolution (0.3 m), which was divided into a grid of cells with 
the same size (1 m resolution). The boundary line (red) defines the edge where water flows out of the study 
area. The three pairs of channel cross sections on the right were examples showing the differences between 
DEM (blue) and field-measured (orange) data
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created to determine flow directions within the 2D simulation domain. In this study, the first 
one was assured during the construction of 2D DEM data (Fig. 2) and the second was gen-
erated by defining that flow only enters the 2D flow area from the upstream boundary and 
moves out of the study area from the downstream boundary (i.e., the red line in Fig. 2). This 

Fig. 3   Spatially distributed values of surface roughness and their original land use/cover (LULC) types. a 
LULC types; b values of surface roughness



	 Natural Hazards

1 3

definition assumes that even during flood inundation, water overflowing from the channel to 
the 2D adjacent areas would only flow out of the simulation domain through the downstream 
boundary, which is reasonable as both sides of the study area have lower elevations than its 
neighbors and thus water cannot move out from the sides. In the study area, flow hydrograph 
obtained from the gauging station for a selected storm event was used as the upstream bound-
ary condition, while normal depth as a parameter to be calibrated was used as the downstream 
boundary. The normal depth assumes that river flows under normal flow (uniform flow) con-
ditions at the downstream boundary of the channel within the study area. It is calculated by 
HEC-RAS based on a local channel slope input by the user.

2.4 � Model calibration

Calibrating the model requires assessing three model parameters. The first is the pre-mode-
ling run time (T). HEC-RAS 2D assumes that the modeled channel at the beginning is dry, 
which is not realistic. So, the model needs to be run for a period such that channel water depth 
reaches the beginning water depth of the input hydrograph. There is no general rule available 
for determining how long this period should be. The second is the normal depth. Its value 
was initially assigned as the local channel slope near the downstream end of the channel (SL), 
which was calculated by extracting from the high-resolution DEM elevation values of a series 
of points along the channel from the outlet up to a point about 200  m downstream of the 
USGS gauging station at Spencer street for determining the elevation difference within the 
length, and then calculating the ratio of the difference to the length. The calculated value of 
SL is 0.0014. Whether this value is appropriate needs to be tested. The third is roughness coef-
ficient, n described earlier.

We used a past storm event in 2007 when flows were large enough to cause local limited 
and isolated inundation sites to calibrate these three types of parameters. As the studied reach 
has been relatively stable since its channelization, we can assume that channel morphology 
during this event was similar to that generated from the DEM in this study. After prelimi-
nary tests, we found that changing values of T and SL had minor effects on the modeled water 
depths, while a small variation of n could lead to higher-degree changes in modeling results. 
So, we fixed T as 14 h and SL as 0.0014 and sought for a set of n values that may best predict 
the measured water depths by comparing modeled and measured water depths using the fol-
lowing three metrics:

•	 Coefficient of Efficiency (COE), which is defined as

Table 1   The roughness values assigned to all LULC types

LULC types Tree canopy Grass/shrub Bare earth Water Roads Buildings Other paved 
surfaces

Roughness value 0.1 0.1 0.03 0.03 0.016 0.4 0.03
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where Tm is the mean of measured water discharges and Tp

i
 and Tm

i
 are the predicted 

and measured water discharges, respectively.COE is equivalent to Nash–Sutcliffe index 
(Nash and Sutcliffe 1970; Cameron et al. 2000) and indicates how well the overall pre-
diction is.

•	 Normalized Absolute Error (NAE), which is defined as (Smith et al. 2008)

•	 Root Mean Square Error (RMSE), which is defined as

COE is more affected by the errors for higher values (e.g., peak water depth), while 
NAE is more influenced by errors for low values (e.g., lower water depths along rising 
and falling limbs of a hydrograph) (Krause et al. 2005; Montanari 2005). RMSE meas-
ures relative accuracy among predictions based on different SL values. The smaller the 
RMSE, the better the prediction.

Modeling results based on many sets of n values including the set reported in only 
three sets may produce reasonably well predictions (Table 2). Overall, they had similar 
COE and RMSE values, while their NAE values are significantly different from one 
another. Among them, case 3 predicted the peak water depth closest to the measured 
one, while their arrival times were similar (Table 2). From the perspective of modeling 
extreme events, better fitting for high water depths is more important than for lower 
ones. Therefore, case 3 was better and the associated n values were selected for mod-
eling the projected 500-year flood event.
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Table 2   Calibration of roughness coefficient using a storm event in 2007

* Refers to the difference between measured and modeled peak water depth
**Refers to the difference of the arrival times between measured and modeled peak water depth

Hpdiff
* Tpdiff** COE NAE RMSE

Case 1: tree (0.2), water (0.018), same for others − 3.13% 34.97% 0.6518 0.0023 1.2197
Case 2: tree (0.1), water (0.018), same for others − 4.20% 30.60% 0.6374 − 0.0847 1.2136
Case 3: tree (0.2), water (0.020), same for others 1.91% 34.97% 0.7114 0.1640 1.2397
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2.5 � Simulation of flood inundation due to a projected 500‑year storm event

Since a 500-year storm event is an extreme flood event that has not occurred in the Onon-
daga Creek, its true hydrograph at the upstream boundary of the study reach is unknown. 
Thus, the shape and magnitude of the hydrograph have to be estimated. We developed a 
method of constructing this hydrograph by analyzing historical discharge data obtained 
from the upstream gauging station at Darwin Avenue, which may be described as follow. 
First, using a series of peak discharges from 1945 to 2016, we performed flood frequency 
analysis by fitting a Log Pearson Type 3 distribution to the data series and extending the 
fitted curve to determine the peak discharge of the 500-year event, which is 150.1  m3/s. 
Second, we selected five largest flood events based on the hydrological records from 1865 
to 2007 (U.S. Army Corps of Engineers 2010) (Table 3) and quantitatively examined their 
hydrograph. Our examination showed that (a) all events had a relatively steep rising limb 
and a relatively gentle falling limb and the ratio of the rising time to falling time was 0.33 
on average and (b) the inflection point on the rising limbs of the five events was on average 
associated with the water discharge of about 11.33 m3/s. Third, based on the results from 
the first two steps, we selected the hydrograph of the 1974 event (Fig. 4) as the prototype 
because it had a smooth shape with a single mode and the highest peak discharge. Fourth, 
this hydrograph was used to construct the hydrograph for the 500-year event following a 
self-designed procedure: (i) the hydrograph above 11.33  m3/s was divided into nine seg-
ments and the slope of each segment was calculated subsequently; (ii) the peak discharge 
was increased from the original one (21.5) to 150.1 m3/s; and (iii) both limbs were raised 

Table 3   The five highest flood 
events in the Onondaga Creek

Rank Time Flood stage (m)

1 July 3–5, 1974 1.975
2 June 20–25, 1972 1.890
3 March 5–6, 1979 1.673
4 April 2–4, 2005 1.573
5 March 30–31, 1960 1.542

Fig. 4   Hydrograph of the 1974 
storm event and the constructed 
500-year hydrograph
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by increasing the slopes of the nine segments proportionally and the resulted hydrograph 
was regarded as representing the 500-year event (Fig. 4). Using this hydrograph and other 
input parameters, inundation areas at different flooding times were predicted by HEC-RAS. 
We define the inundation process as that happened in the duration from the beginning of 
the input 500-year hydrograph to the time when the water depth in a cross section near the 
outlet is the same as that in the upper boundary at the beginning of the event.

2.6 � Analysis of the inundation process and process‑based damage assessment

We recorded the simulation results hourly for the created 500-year event and illustrated the 
dynamic changes of the entire inundation process by selecting three representative inunda-
tion moments at the early (the 47th hour), maximum (the 80th hour), and late (the 115th 
hour) stages. At each selected hour, the inundation depths within the flooded areas were 
categorized into four classes, in which class 1, 2, 3, and 4 refer to the inundation depths in 
the 0–1 m, 1–2 m, 2–3 m, and > 3 m ranges, respectively. These four classes were also used 
to denote buildings within these four different ranges of inundation depths. The illustra-
tion was followed by further quantitative examination of the temporal changes of the maxi-
mum inundation depth and stream power, and inundation area over the inundation process. 
Moreover, the temporal trends of these three parameters after the end of the inundation 
process defined in this study were explored to show the full path of the inundation process. 
Using data in the selected three moments, we then demonstrated quantitatively the variable 
impact of inundation depths on buildings within the inundation areas by calculating num-
bers of buildings falling in each of the four classes and their changes over time, and show-
ing their spatial patterns within the inundation areas.

It can be expected that the above-mentioned classification of inundation depths would 
lead to different results at different moments. To account for this temporal variation, we 
proposed a new classification that combines inundation depths with their time durations 
over the entire inundation period. It is quantitatively expressed by the process-based inun-
dation depth (Dpb), defined as

where Di is the inundation depth that lasted for the time period of ti and T is the entire 
inundation period. The number of ti (i.e., n in Eq. (4)) was determined based on the tem-
poral change of D over the entire inundation period. For a given unit inundation area (i.e., 
1 × 1 m2), Dpb reflected the coupled effect of variable D values and their durations and is 
different from the maximum inundation depth (Dm) in the whole inundation period. The 
above-mentioned four classes for Dpb are referred to as process-based classification (PBC), 
while those for Dm are denoted as the traditional classification (TC). Using our simulated 
data, we showed the difference between these two classifications in terms of inundated 
areas and affected buildings.

This difference showed the complex interaction between inundation depth and dura-
tion, which is primarily tied to different land use/cover (LULC) types. Understanding this 
complexity would reveal the hydrological causes of the differences between PBC and TC 
and promote use of PBC in other flood-prone regions. To effectively capture the impact of 
LULC on PBC, the above-mentioned LULC types were merged into three general groups. 
Group 1 includes trees and grass, group 2 contains bare soils, roads, and bridges, and group 

(4)Dpb =

n∑

i=1

Di

( ti

T

)
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3 involves buildings. For the simulated entire inundation area, A0, it is easy to establish the 
following area relationship between PBC and TC:

where Ani (i = 1, 2, 3, and 4) is the area of each of the four PBC classes and Aoi (i = 1, 2, 
3, and 4) is the area of each of the four TC classes. Each area may be further divided into 
three sub-areas in terms of the three LULC groups. For example, An1 may consist of An11, 
An12, and An13, while Ao1 may consist of Ao11, Ao12, and Ao13. Therefore, these relationships 
may be generally expressed as

Because PBC considered both inundation depths and their associated durations, areas 
of lower classes in PBC (e.g., An1 and An2) tended to be greater than those in TC (e.g., Ao1 
and Ao2), while the opposite may possibly prevail for higher classes (i.e., Ao3 and Ao4). This 
means that areas in class 2 of TC (i.e., TC2) may become those either class 1 or 2 in PBC 
(i.e., PBC1 or 2); areas in class 3 of TC (i.e., TC3) may become those in either class 1, 2, 
or 3 in PBC (i.e., PBC1, 2, or 3); and areas in class 4 of TC (i.e., TC4) may become those 
in either class 1, 2, 3, or 4 in PBC (i.e., PBC1, 2, 3, or 4). For the three LULC groups, these 
conversions from TC to PBC may be quantitatively expressed as follow.

For TC2,

For TC3,

For TC4,

where i = 1, 2, and 3 denotes each of the three LULC groups and P
∗
 represents the propor-

tion of the area for a given conversion from TC to PBC. Examining the patterns of these 
P
∗
 may reveal the impact of the three LULC groups on the conversion of areas from TC to 

PBC.

3 � Results

3.1 � Inundation processes of a 500‑year event

Inundation started at the 13th hour in the middle bend and lower straight section of the 
study reach (Fig. 2). Then, it gradually extended along the channel and the floodplain imme-
diately next to these two sections and reached the maximum extension at approximately the 

(5)A0 = An1 + An2 + An3 + An4 = Ao1 + Ao2 + Ao3 + Ao4

(6a)Ani = Ani1 + Ani2 + Ani3, i = 1, 2, 3, and 4

(6b)Aoi = Aoi1 + Aoi2 + Aoi3, i = 1, 2, 3, and 4

(7a)Pi−21 + Pi−22 =
An1i

Ao2i

+

An2i

Ao2i

= 1

(7b)Pi−31 + Pi−32 + Pi−33 =
An1i

Ao3i

+

An2i

Ao31

+

An3i

A03i

= 1

(7c)Pi−41 + Pi−42 + Pi−43 + Pi−44 =
An1i

Ao4i

+

An2i

Ao41

+

An3i

A04i

+

An4i

Ao4i

= 1
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80th hour. Later, at about the 120th hour, inundated water largely retreated and the in-chan-
nel water depth dropped to its original stage. However, water in the inundation zone con-
tinuously retreated till about the 144th hour, after which water depths essentially remained 
unchanged, indicating the end of the flood event (see the inundation video in the supple-
mentary material). Three representative snapshots within the inundation processes (Fig. 5a, 
b, c) indicated that (i) flood inundation was primarily limited to the neighborhoods close 
to the channel and in the areas with low elevations and very gentle slopes (i.e., the down-
stream neighborhoods); (ii) inundation depths varied both spatially at a given moment and 
temporally from one to another moment; and (iii) spatial variation of inundation depths 
during the rising limb of the hydrograph (i.e., Fig.  5a) was much greater than that dur-
ing the falling limb (i.e., Fig.  5c). These visual variations may be further characterized 
quantitatively.

Since the beginning of flooding, inundation depth increased at an average rate (0.107 m/
hr), much higher than that of inundation area (0.063 km2/hr) within the first 42 h (Fig. 6). 
In the following 26  h, the increase rate of inundation depth dropped significantly to 
0.011 m/hr and that of inundation area was reduced to 0.025 km2/hr. Both inundation depth 
and area reached the maximum value at the 80th hour, which was only about 8 h after the 
arrival time of the peak discharge. Subsequently, inundation depth decreased with a rate 
of 0.024 m/hr till the end of the event (i.e., the 120th hour). The rate of decrease after the 
80th hour was much less than that of increase before the 80th hour for inundation depth, 
leading to a higher inundation depth of 3.722 m at the 120th hour (Fig. 6). During the same 
period, inundation area decreased at a rate of 0.043 km2/hr, which was comparable to the 
average increase rate before the 80th hour. Yet, at the end of the event, there was still an 
inundation area of 1.067 km2. Similar to the change of inundation area, the stream power 

Fig. 5   Three representative moments of the inundation process. In each, blue objects represent buildings 
within the study area, but outside of the inundation extent; Class 1 (Dep)–Class 4 (Dep) were the four 
classes of inundation depths; Class 1 (Bldg)–Class 4 (Bldg) were the four classes of buildings falling into 
the corresponding four classes of inundation depths
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of flooded water increased before the 80th hour and deceased with a similar rate after the 
80th hour (Fig. 6). At the end of the event, the remaining flooded water could still have 
the stream power as high as 1.049 × 10–4 W m−1, indicating that the flooded water was still 
moving. Although the maximum inundation depth at this moment was 3.722 m, it merely 
represented 0.02% of the total inundation area (i.e., 1.067 km2) that had inundation depths 
greater than 3 m (class 4 in Fig. 7). Those falling in the 2–3 m range took about 3.45% 
(i.e., class 3 in Fig.  7), while about 22.11% in the 1–2 m range (i.e., class 2 in Fig.  7). 
The majority of the inundation area had depths ranging between 0 and 1 m (i.e., class 1 in 
Fig. 7), taking about 74.4% of the total inundation area.

Obviously, at the end of the flood event, the inundation process had not ceased yet. 
Simulation with extended hours (Fig.  8a) showed that both inundation depth and area 
continuously decreased after the end of the flood event for about 24 h and then began to 
level off after the 144th hour. Similarly, stream power decreased to near zero since the 
144th hour. These trends signified that inundation processes actually ended at the 144th 
hour, though water depth in the channel near the outlet of the studied reach dropped to 
the original stage 24  h earlier. After this moment, there was still the inundated area of 
about 0.6 km2 remained. This area included a set of standstill ponds disconnected with one 
another (Fig.  8b). These detailed inundation processes provided much more information 
than a single inundation map for understanding the nature of the flooding and the relevant 
management.

3.2 � Difference between process‑based and classic inundation classifications

The traditional classification (TC) identified the area of 1.404  km2 whose inundation 
depths belong to class 1 (Fig. 9a and Table 4). In the process-based classification (PBC), 
additional areas identified in class 1 were from classes 2, 3, and 4 in TC, taking the area of 
0.874, 0.024, and < 0.001 km2, respectively. Consequently, the inundated area in class 1 of 
PBC increased by 64.2% from 1.404 to 2.301 km2. The area in class 2 of TC was identified 
as 0.894 km2, most of which (about 97.8% was converted into class 1 of PBC (Table 4). 

Fig. 6   Temporal changes of the maximum inundation depth, inundation area, and stream power during the 
entire inundation process
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However, about 88.6% and 17.4% of areas in class 3 and 4 of TC, which make 0.181 and 
0.050 km2, respectively, were converted to the area in class 2 of PBC (Fig. 9a), resulting 
in the total area of 0.251  km2 (Table 4). The identified area in class 3 of TC was about 
0.205 km2, whereas in the same class of PBC was around 0.182 km2, decreased by 11.2%. 
This decrease was the net effect of two processes. First, the majority of areas in class 3 of 
TC were transformed to class 1 and 2 of PBC by 0.024 and 0.181 km2, respectively. Sec-
ond, a proportion of areas in class 4 of TC, which amounted to 0.182 km2, was converted 
to class 3 of PBC (Table 4). The area of class 4 in TC was 0.289  km2, but decreased to 
0.056 km2 in PBC. The decreased area was mainly transformed into class 3 by 0.182 km2 
and class 2 by 0.05  km2 (Fig. 9a and Table 4). Overall, the areas in higher classes (i.e., 
class 3 and 4) of TC significantly shifted to lower classes (i.e., class 1 and 2) of PBC with 
more areas clustered in class 1 of PBC. This difference between the two different types of 
classification suggested that inundation depths taking account of inundation dynamics are 
significantly lower than the static inundation depths.

Numbers of buildings (Nb) falling into the four classes also changed from TC to PBC. 
The Nb in class 1 was 657 in TC, while it increased to 1146 in PBC (Table 5). The majority 
of the increased Nb was from class 2 in TC (Fig. 9b), which was 487 (Table 5). The Nb in 
class 2 was greatly decreased from 496 in TC to 65 in PBC. Most of the decreased Nb (i.e., 
487) was transferred to class 1 in PBC (Fig. 9b), though 49 buildings in class 3 and 7 build-
ings in class 4 of TC were transferred to PBC 2. TC had 51 buildings in class 3, but 49 of 
them were shifted to class 2 of PBC and only 2 were transferred to class 1. In class 4, most 
of the 15 buildings of TC were turned into class 3 and 2 evenly with Nb = 7, leaving only 
one building in class 4 (Table 5). Similar to the case of inundated areas, most changes hap-
pened in the switch of those in class 2 to class 1 from TC to PBC. In higher classes (i.e., 3 

Fig. 7   Spatial distribution of inundation depths at the end of the inundation process (i.e., the 120th hour). 
The four colors in legend represent the four classes of inundation depths
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and 4), changes of inundated areas were more complex than those of buildings. Nonethe-
less, both inundated areas and buildings showed a general trend of shifting from high to 
low classes, reflecting the impact of inundation duration on damage classification.

3.3 � Roles of land use/cover in the changing trends between TC and PBC

At the local spatial scale (i.e., the areas surrounding individual buildings), the role of 
land use and land cover (LULC) in the transfer of inundated areas from TC to PBC 
was different in different classes. For class 2 of TC, more than 97% of the area in all 
three LUC types was turned into the area in class 1 of PBC (Fig. 10a), indicating that 
LULC types did not have impact on the switching of areas from class 2 in TC to class 1 
in PBC. Majority of the area in class 3 of TC was turned into class 2 in PBC, such that 
the converted area for each LULC type of class 2 in PBC took 95.3, 95.2, and 85.4% of 
that in the original class 3 of TC, respectively (Fig. 10b). Thus, the area in LULC type 
3 tended to be less easily transferred to that in class 2 of PBC. In class 4 of TC, 45% 
and 32% of the area were transferred into that of class 3 and 2 in PBC, respectively, 
for LULC type 1, whereas 23% of it remained the same class in PBC (Fig. 10c). These 
three percentages were 47.2, 37.8, and 15% for LULC type 2, while 41.5, 41.5, and 17% 

Fig. 8   Development of post-event flood inundation. a Temporal trends of the maximum inundation depth, 
inundation extent, and stream power; b comparison of spatially distributed inundation depths between the 
120th and 144th hours



Natural Hazards	

1 3

for LULC type 3. Thus, more percentages of the area in class 4 of TC were turned into 
class 2 and 3 of PBC than remained in class 4. Furthermore, LULC type 2 in class 4 of 
TC tended to be converted into class 2 of PBC easier, whereas LULC type 1 inclined to 
relatively easy to be switched to LULC type 3 of PBC (Fig. 10c).

Fig. 9   Difference between 
process-based (PBC) and classic 
inundation (TC) classifications 
for a inundation areas and b 
inundated buildings

Table 4   Differences of inundation areas between the two classifications (PBC vs TC)

PBC 1 PBC 2 PBC 3 PBC 4 TC area (km2)

TC 1 1.4036 1.4036
TC 2 0.8740 0.0197 0.8936
TC 3 0.0236 0.1810 1.545 × 10–4 0.2047
TC 4 2.997 × 10–5 0.0503 0.1820 0.0564 0.2888
PBC area (km2) 2.3012 0.2509 0.1822 0.0564
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Table 5   Differences of inundated 
buildings between the two 
classifications (PBC vs TC)

PBC 1 PBC 2 PBC 3 PBC 4 Nb of TC

TC 1 657 657
TC 2 487 9 496
TC 3 2 49 0 51
TC 4 0 7 7 1 15
Nb of PBC 1146 65 7 1

Fig. 10   Impact of land use/cover (LULC) on differences of inundated areas between the two types of clas-
sification (i.e., PCB vs TC) in different classes. In each figure, class x_y indicates percentage of inundated 
areas in x class of TC being turned into y class in PBC. For each of LULC types (i.e., the horizontal axis), 
the sum of percentages of all points equals 1. a, b, and c are for changes of inundated areas around indi-
vidual buildings, while d, e, and f are for those of inundated areas
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At the global spatial scale (i.e., the entire inundated area), LULC types again had no 
obvious impact on the transfer of the area in class 2 of TC to class 1 of PBC (Fig. 10d). 
However, their roles become more complex for areas transferred in class 3 and 4 of TC. 
In class 3 of TC, percentages of areas that remained in class 3 of PBC were almost zero 
for all three LULC types (Fig.  10e) and hence may be negligible. Although more areas 
were turned into class 2 of PBC, different percentages of the original areas in the three 
LULC types were transferred, which were 89.8, 88, and 63.7% for LULC type 1, 2, and 3, 
This signified that LULC type 1 and 2 were easier to be transferred to class 2 of PBC than 
LULC type 3. The percentages of transferred areas in class 1 of PBC were also different, 
showing 10.2%, 12%, and 36.3% for LULC type 1,2, and 3, respectively. This suggested 
that LULC type 3 was easier to be transferred to class 1 of PBC. In class 4 of TC, the vari-
able percentages of transferred areas for the three LULC types were mainly exhibited in 
class 2,3, and 4, because little areas were turned into class 1 of PBC (Fig. 10f). For LULC 
type 1, converted areas in class 2 and 3 of PBC and that remained in class 4 of PBC were 
similar, taking the percentage of the original area between 28 and 38%. For LULC type 3, 
percentages of the converted areas to class 2 and 3 of PBC were similar, which were 41% 
and 37%, respectively, but higher than that remained in class 4 of PBC, which was only 
21.9%. Yet, for LULC type 2, 74% of the original area was transferred to class 3 of PBC, 
while only 9.3% went to class 2 and 15.9% remained in class 4 of PBC. These patterns sug-
gested that in class 4 of TC, LULC type 2 tended to be more readily transferred to class 3 
of PBC, LULC type 1 may be prone to stay in the same class (i.e., 4) of PBC, and LULC 
type 3 did not show significant preference.

4 � Discussions

4.1 � Modeling uncertainties

Although roughness coefficients for the 500-year event were calibrated using an event in 
2007, we have no way to know whether these calibrated values truly represent surface 
roughness of a 500-year event. To assess this uncertainty in modeling, we run the model 
using each of the two additionally selected different sets of roughness coefficients, one of 
which was the best set for a large storm event in 2011. The results showed that compared 
with the original one (i.e., case 1 in Table 6), increase of roughness coefficients for water 
bodies by 20% (case 2) and 40% (case 3) would lead to increase of the inundated area by 
7.7% and 16.7%, respectively (Table 6). However, the maximum inundation depth almost 

Table 6   Model results for the three cases with different roughness coefficients

Three cases Roughness coefficients Maximum 
inundation area 
(km2)

Maximum 
inundation 
depth (m)

The arrival 
time (hour)

Case 1: calibration using the 
2007 event

0.2(tree); 0.02(water) 2.7679 5.7789 80

Case 2: the best fit for the 2011 
event

0.2(tree); 0.024(water) 2.9826 5.7772 82

Case 3: a different set 0.2(tree); 0.028(water) 3.2307 5.7790 84
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remained the same in all three cases, though its arrival time was delayed by 2 and 4 h in 
case 2 and 3, respectively.

In case 2, the increased 7.7% of inundated areas (i.e., 0.2147  km2) were mainly con-
centrated on the very upstream and downstream sections of the study reach (Fig.  11). 
These two areas were local sinks neighboring the simulated reach (Fig. 2a). In case 3, the 
additional 9% of inundated areas were created compared with those in case 2. They were 
located only in the downstream flat area (Fig. 11). Among these additional inundation areas 
in cases 2 and 3, more than 99% of them had inundation depths in class 1 (i.e., inundation 
depths range between 0 and 1 m), while less than 1% had inundation depths in class 2 (i.e., 
between 1 and 2 m). Evidently, changes of roughness coefficients had limited impact on 
modeling results. Thus, in simulating a 500-year flood event, it is sufficient to ‘calibrate’ 
roughness coefficients using a known (relatively) large event. The classic validation step 
(Horritt 2006; Chen et al. 2015; Yu and Coulthard 2015; Zischg et al. 2018) may not be the 
best procedure of determining the most appropriate set of roughness coefficients.

4.2 � Significance of process‑based classification

Given that the simulated flood inundation was a projected 500-year event that has not 
occurred, there are no measured flood inundation data available for directly validating our 
calibrated model. Alternatively, we compared our predicted maximum flood inundation 
map with the latest updated 500-year flood map published by FEMA. Our simulated maxi-
mum inundation areas were 51.5% larger than those predicted by FEMA (Fig. 11), appar-
ently representing a significant difference. However, the inundation depths in the over-
estimated inundated areas were mostly in class 1 (i.e., below 1 m), taking about 89% of 
the total over-estimated areas (Fig. 12). The remaining 10% and 1% were in classes 2 and 
3, respectively. Furthermore, within over-estimated areas in class 1, 23.2%, 15.5%, 6.3%, 
and 6.5% had inundation depths in the ranges of 0–0.3, 0.3–0.6, 0.6–0.9, and > 0.9  m, 
respectively. This nature of the difference between the two suggested that (1) either model 
may predict similar inundation areas with higher inundation depths; and (2) FEMA’s pre-
diction involved much less inundation areas with smaller inundation depths than ours. 
The discrepancy in the two predicted inundation areas primarily reflected that consider-
ing inundation processes might increase the maximum inundation extent with more areas 

Fig. 11   Over-estimation of inun-
dated areas in each class based 
on classic classification
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covered by shallow flood water, which could deeply affect existing policies for flood hazard 
management.

From the perspective of flood management, actions aiming at reducing flood hazard 
may be taken in three different stages: before, during, or after flooding. Effective spatial 
plans could be implemented to protect people from being affected by floods before their 
occurrence (De Moel et  al. 2015; O’Grady et  al. 2019). Awareness raising and emer-
gency planning are crucial to reduce loss of properties and life during floods (De Moel 
et al. 2015). Insurance, social safety nets, and entitlement programs can help affect people 
recover from flood disaster (Blaikie et al. 1994; Cutter et al. 2000; Lamond et al. 2019). 
Our study contributes to the first two stages. The process-based classification revealed that 
flood hazard in an urban setting is not only related to the maximum inundation depth, but 
also affected by inundation duration. This new classification can result in more accurate 

Fig. 12   Comparison of the maxi-
mum inundation areas predicted 
by our model and FEMA. The 
gray areas were predicted by 
FEMA; the colored areas were 
over-predicted areas by our 
model. The four classes were 
consistent with those defined 
earlier based on TC
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and comprehensive flood hazard map for helping emergency planning and rescue work 
during flooding. It timely ingratiates the growing attention on assessing the complex vari-
ability of flood hazard caused by flood dynamics, an issue that has been widely discussed 
(Costabile et al. 2020; Wu et al. 2020) and provides a practical means of such assessment.

Changes in LULC types have known to affect flood characteristics (Hounkpe et  al. 
2019). Our analysis further showed that LULC types response differently to flood process. 
For instance, trees and grass tend to retain water for a longer time period (Fig. 10a–f), sug-
gesting that policies promoting planting trees and grass should be implemented before 
floods. Therefore, future flood hazard management should be based on the process-based 
inundation classification as illustrated in this study. Although our findings were based on 
modeling analysis for a local river, the principle of developing the process-based inunda-
tion classification may be easily applied to other rivers for managing extreme floods.

5 � Conclusions

Using HEC-RAS 2D, we simulated the flood inundation process of a 500-year event in 
the downstream reach of Onondaga Creek, located in City of Syracuse, Central New York. 
Although model results and the subsequent analyses were from a case study, our findings 
have broad significance for future flood hazard management in other urban settings and are 
summarized as follows:

(1)	 Inundation areas and depths and the associated stream powers changed faster during 
the rising limb than during the falling limb and lasted longer than the duration of the 
storm event. Associated with these dynamic changes of inundation processes was the 
fact that number of buildings inundated by flooding water with inundation depths in 
different ranges (classes) varied from time to time during the entire inundation process. 
The general implication is that evacuation plan should be implemented as early as pos-
sible and flood mitigation management should aim at the period longer than the event 
duration;

(2)	 The degree of a building affected by flood inundation is determined not only by inun-
dation depth but also inundation duration. The weighted inundation class quantifying 
the degree of flood impact on buildings increased generally with inundation duration. 
Consequently, the degree of flood impact on inundated buildings characterized in terms 
of the highest inundation depth a building experienced tended to overestimate the flood 
impact on the building. Assessing flood inundation impact on affected buildings based 
on the inundation processes is apparently more accurate than that based on the static 
maximum inundation depths and extent;

(3)	 For an extreme flood event that has not occurred yet, such as a 500-year event, the 
classic calibration–validation method for determining model parameters, such as sur-
face roughness (i.e., Manning’s n), is not applicable because the true values of surface 
roughness are unknown. Thus, sensitivity analysis should be a more efficient means 
of testing robustness of model parameters.

(4)	 Our modeled maximum inundation extent was slightly larger than that predicted by 
FEMA with the over-estimated areas mainly occupied by shallow water whose depth 
less than 0.5 m. This difference more reflected the fact that HEC-RAS 2D accounts 
for the cumulative effect of inundation processes, while HEC-RAS 1D considers the 
lumped inundation effect. We propose that future flood control management should 
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consider the impact of the entire flood inundation processes rather than a static inunda-
tion map.
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